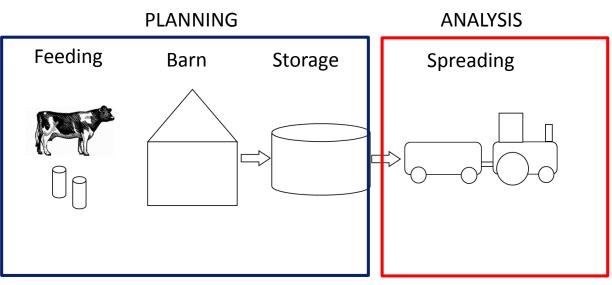


National default values for manure in Sweden

Lena Rodhe, Associate Professor, <u>lena.rodhe@jti.se</u> and Erik Sindhöj, JTI- Swedish Institute of Agricultural and Environmental Engineering

Pernilla Kvarmo and Johan Malgeryd, Swedish Board of Agriculture


The project is partly financed by the European Union European Regional Development Fund

Manure handling – a chain

Calculated or default values

Analysis of nutrient content!!

Planning tool VERA – excreted amounts

 Faeces and urine nutrient content can be calculated in two ways, either

a) based on 'standard feeding' for different animal species and production levels, or

- b) based on actual feeding and production level on farm (nutrient balance of animal categories)
- The amount of manure is based on excreted amount of dry matter (DM) and the DM-content of faeces and urine with 'standard feeding' as above.
- Data have recently been updated for dairy cows and pigs. Next animal species to be updated are poultry and other types of cattle.

The European Agricultural Fund for Rural Development: Europe investing in rural areas

Examples of default excretion values, N, P and K per animal place and year

Tabell 5. Årsproduktion av kväve (N), fosfor (P) och kalium (K) I färsk träck och urin från olika djurslag

	Innehåll av växtnäring (kg/djurplats och år)						
Djurslag	N	P	K				
Mjölkko, 8 000 kg ECM4/år	132	15,2	114				
Mjölkko, 10 000 kg ECM4/år	142	16,5	106				
Mjölkko, 12 000 kg ECM4/år	178	21,0	117				
Diko, helår	63	12	75				
Diko, enbart stallperiod 6 mån	22	5	28				
Kviga/stut <1 år	21	3	26				
Kviga/stut >1 år	47	8	54				
Gödtjur 1-12 mån	32	6	15				
Vallfodertjur 1-16 mån	36	6	33				
Betestjur 1-18 mån	40	6	46				
Sugga, 2,2 omg/år (inkl. 23 smågrisar till 30 kg)	35	6,7 ^{b)}	13				

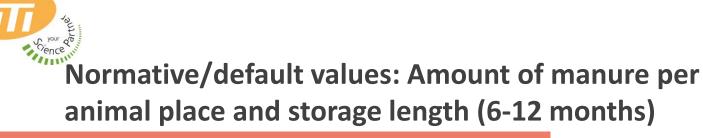
JTI – Swedish Institute

The European Agricultural Fund for Rural Development: Europe investing in rural areas

Planning tool VERA – manure property changes in stables

- Addition of bedding material (amount and type)
- Addition of cleaning and waste water (default values)
- Number of cattles, robotic milking? (higher water consumption with robots, default value)
- Ammonia emissions (default values depending on animal species, manure handling system (liquid, solid, deep straw bed) and bedding material
- Losses due to turn-over in the organic matter. Netto amounts of DM are recalculated to amount of manure based on empirical values of DM content and bulk density.

Planning tool VERA – manure property changes in storage


Depending on covering (roof, stable crust, no cover):

- Addition of precipitation in the community reduced with evaporation (default value), and storage surface
- Additions of effluents from silage storages
- Addition of water from hard standings (area) or other water additions like roof
- Ammonia emissions (default values depending on animal species, type of manure and storage conditions like cover or not, manure handling system (liquid, solid, deep straw bed) and DM turn-over losses (composting).

JTI – Swedish I

		Pro	ducerad	d mänge	d gödse	l per dj	urplats	vid olik	ca lagrir	ngstid ((m²)	
		Fastgi	idsel"		Uri	n + göd	lselvatt	en		Flytg	ödsel	
	Lagringstid (antal månader)			Lagringstid (antal månader)			Lagringstid (antal månader)					
	6	8	10	12	6	8	10	12	6	8	10	12
Mjölkko, 8 000 kg ECMb)/år	7,1	9,5	11,9	14,3	4,4	5,9	7,3	8,8	14,5	19,4	24,2	29,1
Mjölkko, 10 000 kg ECMb)/år	7,2	9,6	12,0	14,4	4,5	6,0	7,5	9,0	14,8	19,7	24,6	29,5
Mjölkko, 12 000 kg ECMb)/år	8,0	10,7	13,4	16,1	5,1	6,8	8,5	10,2	16,6	22,1	27,6	33,1
Kviga/stut < 1 år	1,8	2,4	3,0	3,6	1,3	1,7	2,2	2,6	3,0	4,0	5,0	6,0
Kviga/stut > 1 år	2,9	3,9	4,9	5,9	2,4	3,2	4,0	4,8	5,2	6,9	8,6	10,3
Gödtjur, 1–12 mån	1,9	2,6	3,2	3,9	1,5	1,9	2,4	2,9	3,3	4,4	5,5	6,6
Vallfodertjur, 1–16 mån	2,5	3,4	4,2	5,1	2,1	2,8	3,5	4,2	4,5	6,0	7,6	9,1
Betestjur, 1–18 mån	3,0	4,0	5,0	6,0	2,5	3,4	4,2	5,1	5,3	7,1	8,9	10,7
Diko, 6 mån stallperiod	3,9				2,2				6,1			
Sugga i produktion, 2,2 omg/år	1,5	2,0	2,5	3,0	3,0	4,0	4,9	5,9	4,7	6,3	7,8	9,4
Suggplats i satellit, 6,5 omg/år	3,2	4,3	5,4	6,5	6,4	8,6	10,7	12,8	9,5	12,6	15,8	18,9
Sinsuggplats i suggnav, 4,4 omg/år	0,7	0,9	1,1	1,3	1,2	1,6	2,0	2,5	1,8	2,4	3,0	3,6
Slaktsvin 3,0 omg/år	0,4	0,5	0,6	0,7	1,0	1,3	1,7	2,1	1,6	2,1	2,6	3,1
Värphöns 100 st	1,9	2,6	3,2	3,9					4,8	6,4	8,0	9,6
Unghöns 100 st, 2,2 omg/år	0,6	0,8	1,0	1,2								

Swedish inventory of fertiliser use in Sweden, every 2nd year

 Amount N, P and K in manure calculated by using the same default values as in VERA together with animal production data.

Additional information from the inventory:

Storing

- handling methods of manure (solid, liquid, semisolid, deep straw litter)

- storage conditions (filling storage and type of cover or no cover) and capacity (months).

Application

- time of spreading,
- which crops,
- application rates,
- spreading techniques, time between spreading and incorporation.

The result is used for instance when calculating the ammonia emissions from Swedish agriculture.

Statistics Sweden, 2014

'Manure sampling safari' – farm scale sampling

- In 1999, JTI sampled manure from 130 farm storages with solid or liquid manure from cattle and pigs. Data concerning micro-nutrients are still used (Steineck et al., 2000) as well as reference of calculated DM content.
- In 2004, JTI also sampled poultry manure (Salomon et al., 2006).
- Other studies with balances of cattle barns, showed that micro-nutrients (Zink) increased in the barn (Gustafson et al., 2007), explained by corrosion of barn equipment.

Advantages and challenges of the existing systems at the national level in SWEDEN

Advantages

- Default values of nutrient content of manure used by many stakeholders.
- Good as planning tool for amount of P and K on farm, and the need of supplementary mineral fertilisers on farm.
- A good help for calculating the need of storage capacity, used both by consultant and authorities.
- A good help for planning in which fields to place the manure based on content of P and K together with soil analysis and at which doses =>
- More efficient use of P and K on farm level, better economy, reduced risks of eutrophication.

Challanges

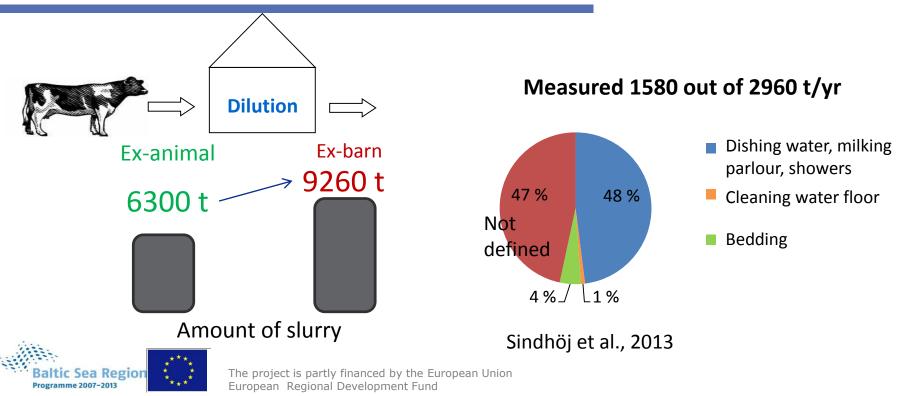
- To update feeding rations continuously (can change rather fast), as well as emission factors for ammonia, reflecting barn design, handling methods and technologies of today.
- Lack of feed analysis data on farm level, like nutrient content of roughage (silage).
- The changes of manure properties in stables depending on barn design, water dilution, management routines, need to be investigated additionally.
- The advisory service can see a potential of improvement of the formula for calculating needed storage capacity.
- High risk of pollution, if the fertilisation is not based on actual content of nutrients, in the first hand Nitrogen.

JTI - Swedish Institute of Agricultural and Environmental Engineering

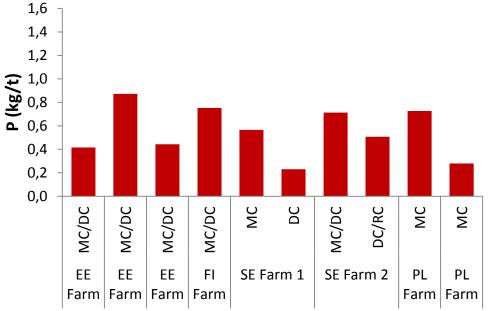
Sea Region

Programme 2007-2013

Baltic Manure: Correlation between calculated P content excreted (Ex-animals) and measured Ex-housing

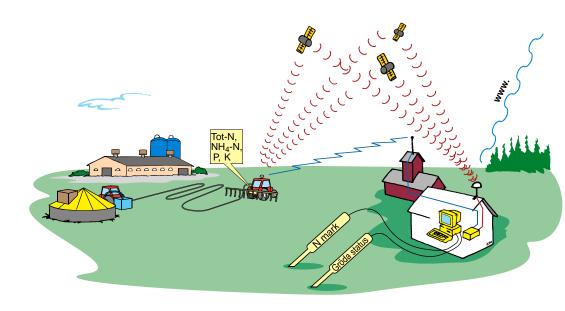


The project is partly financed by the European Union European Regional Development Fund



Swedish dairy farm, barn with 285 cows

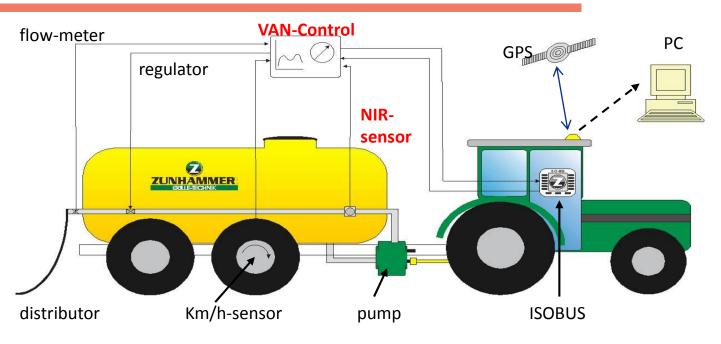
Baltic Manure: Dilution in the barn, example


The project is partly financed by the European Union European Regional Development Fund

Sindhöj et al., 2013

Precision agriculture: manure spreading

Band spreading, placement



Injection – low ammonia emissions

The 'lab' on the tanker makes it possible to measure the contents immediately before distribution

ZUNHAMMER GmbH

National needs for developing the existing system in SWEDEN

- Help with updating the calculations more frequently.
- Validation and identification of errors when calculating nutrients in manure and amounts:
 errors in dosage of feed components, in
 - declaration, in sampling for analysis etc.
- Dilution of manure in barns and outdoor sources.

Potential of developing and implementing a regional joint basis for an advanced nutrient standards system from the perspective of SWEDEN

- Better understanding of how barn design and management inside the barns influence nutrient content and mass of manure leaving the stable.
- Improved calculation of storage capacity necessary for environmental-friendly use of manure.
- Learning from each other.

Thank you for your attention!

PART OF

